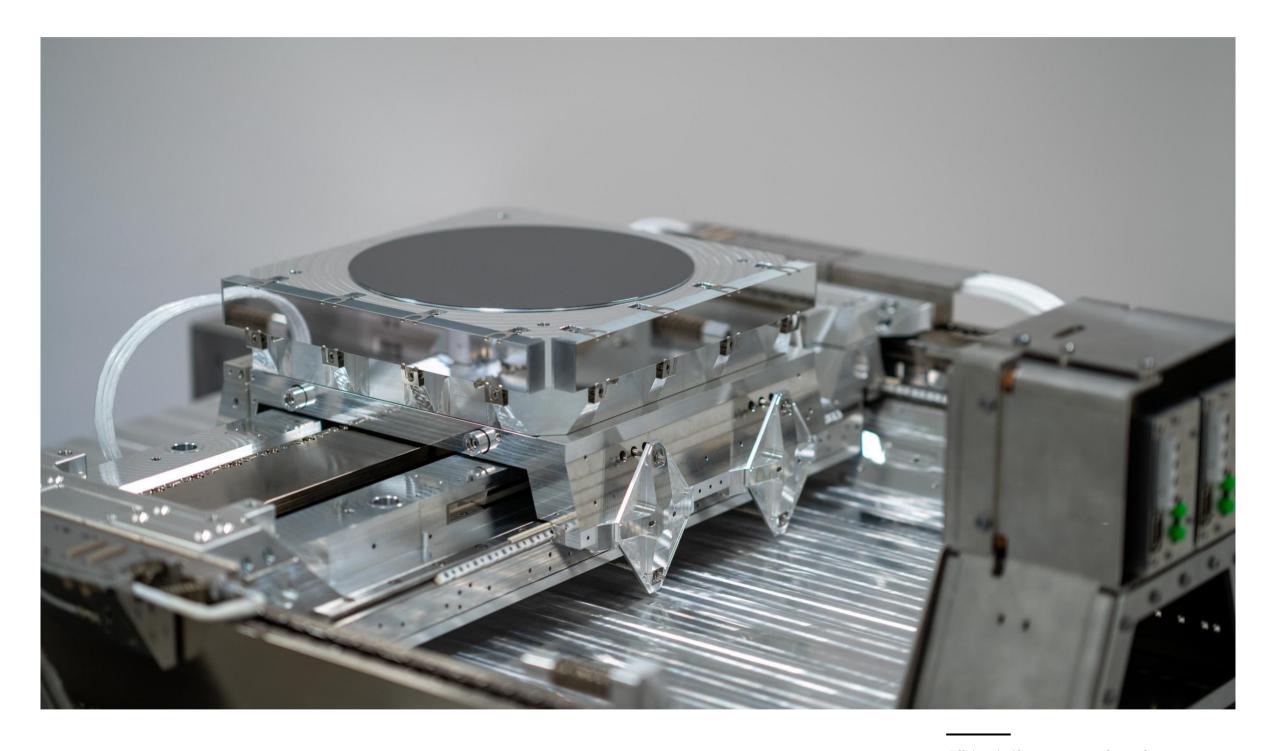


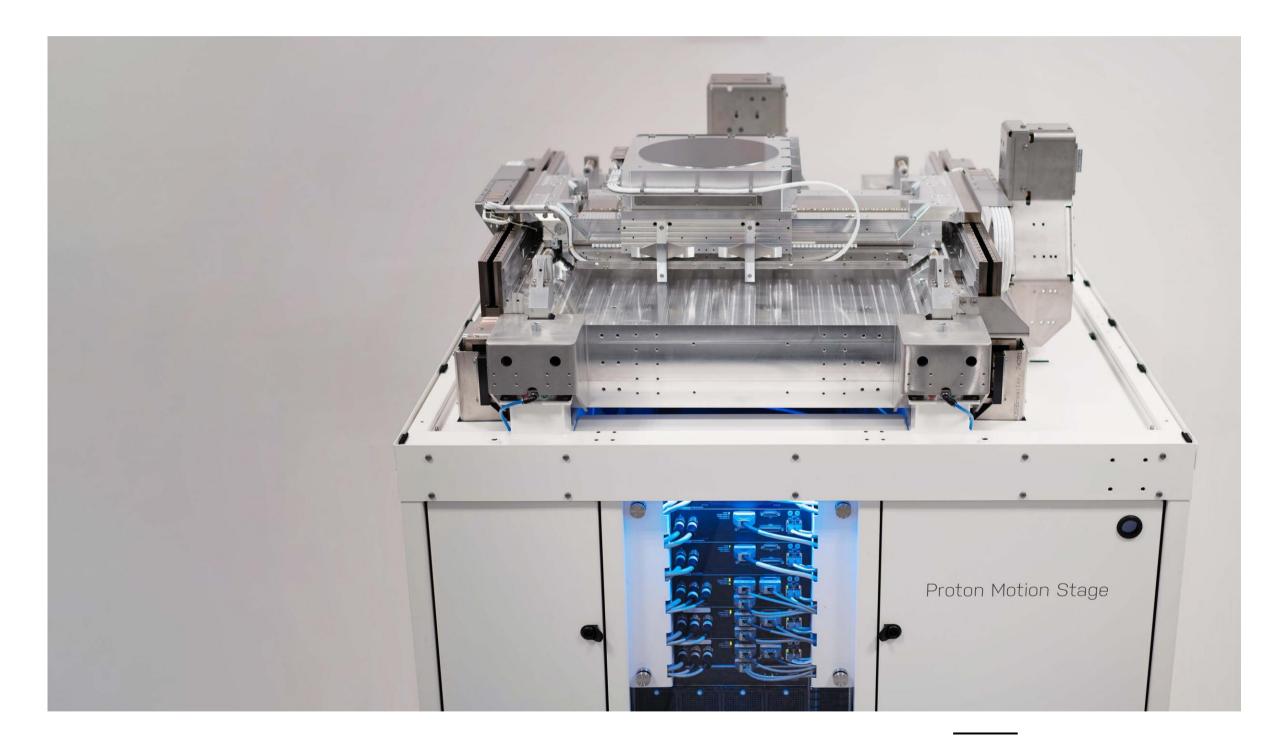
SERVO DRIVES CATALOGUE



May 2022

TABLE OF CONTENTS

A Passion for Technology	3
Overview	4
Apogee Line	5
Features	6
Performance Specifications	7
Mechanical Specifications	8
Kepler Line	9
Features	10
Performance Specifications	11
Mechanical Specifications	12
Cyngus Line	13
Features	14
Performance Specifications	15
Mechanical Specifications 48V versions	16
Mechanical Specifications 400V versions	17
Firmware Features	18
Contact	19



Off the shelf motion stage for wafer inspection, powered by Apogee and Kepler drives

TABLE OF CONTENTS

A Passion for Technology	3
Overview	4
Apogee Line	5
Features	6
Performance Specifications	7
Mechanical Specifications	8
Kepler Line	9
Features	10
Performance Specifications	11
Mechanical Specifications	12
Cyngus Line	13
Features	14
Performance Specifications	15
Mechanical Specifications 48V versions	16
Mechanical Specifications 400V versions	17
Firmware Features	18
Contact	19

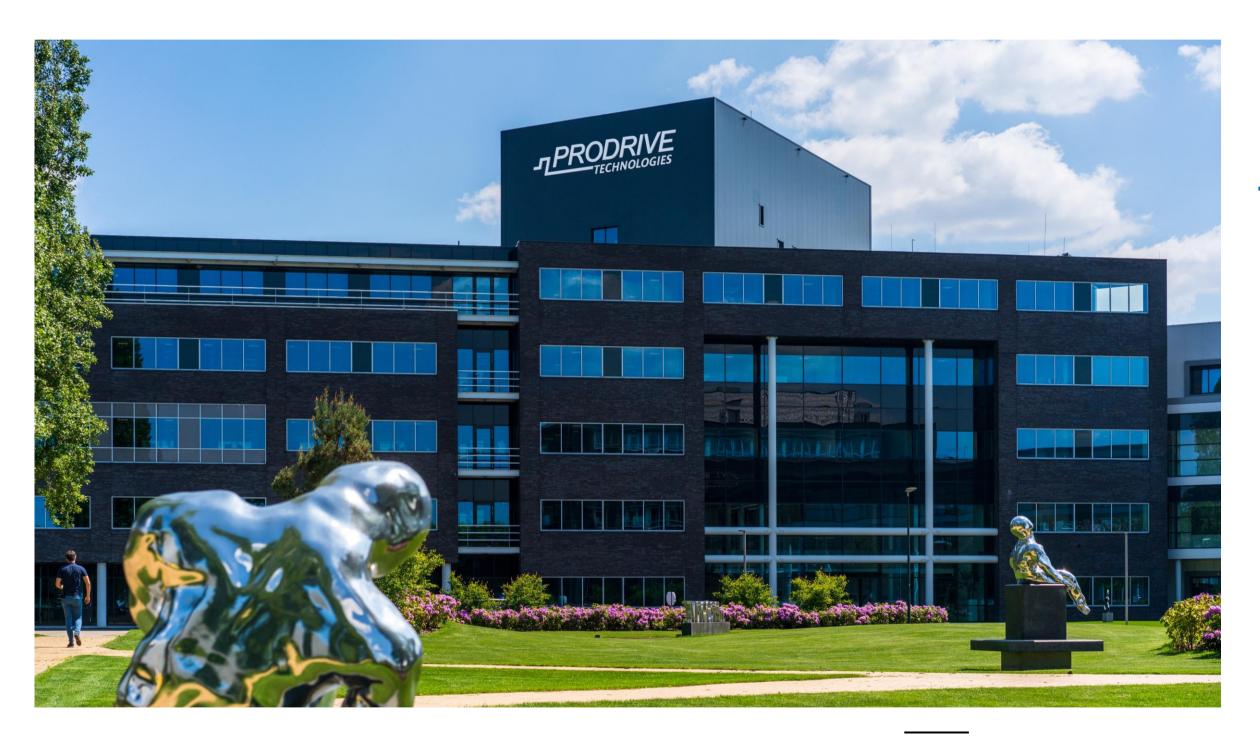
Off the shelf motion stage for wafer inspection, powered by Apogee and Kepler drives

A PASSION FOR TECHNOLOGY

Knowledge

Engineering excellence is the driving force behind servo drive innovation in both design and manufacturing. Prodrive has a highly skilled group of electrical, mechanical and software engineers capable of customizing drive technology towards your needs.

Quality


Quality is in the DNA of Prodrive Technologies. With a long history in electronics manufacturing, Prodrive continues in this area with the same philosophy and processes, setting a new standard within the servo drive market.

Automation

Design for manufacturing is key to reduce cost and guarantee quality. Circuit board manufacturing, testing and assembly are highly automated processes which guarantee a constant quality at minimum cost.

Time to market

Due to the agility of Prodrive Technologies' large development department, customization can be performed in a very short time, providing a short time to market for challenging mechatronic applications.

Prodrive Technologies HQ Campus, The Netherlands

OVERVIEW

Cygnus

Highly integrated drive series, featuring up to 4 axes, safe torque off and safe brake control.

Typical applications

- Factory automation
- Machining
- XYZθ stages

Kepler

Low noise, dual output drives for demanding applications requiring high linearity and a very low output current ripple.

Typical applications

- Active vibration isolation
- Gantry stages
- Precision robotics

Apogee

Ultra low noise, high stability precision amplifier which rivals the best linear amplifiers.

Typical applications

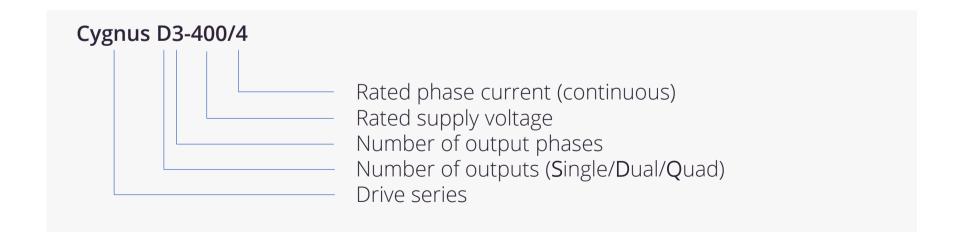
- Metrology and lithography stages
- Nanometer positioning
- Replacement for linear amplifiers

Quasar

Bi-directional power supply with integrated power factor correction circuitry.

Typical applications

- Power supply for Cygnus drives
- Elimination of braking resistors


CYGNUS LINE

Cygnus motor drives come with a powerful integrated motion controller and a wide range of connectivity options. This makes the Cygnus the ideal choice for many applications. Due to its integrated input / output filtering, the Cygnus can operate with a minimal number of external components. The drive can be commanded via Ethernet or by using the CiA402 compatible EtherCAT interface.

The Cygnus drives make use of the programmable Prodrive Motion Platform (PMP). PMP is a highly flexible platform which is currently used across multiple industries. The motion controller can be integrated in the most demanding systems via the powerful Motion API (C++/C#). Custom real-time code can be deployed via Simulink code generation. The PMP tooling ensures fast and effortless commissioning by offering advanced signal tracing capabilities and a fully customizable HMI interface.

Integrated filtering

Programmable PMP motion controller via MATLAB Simulink integration

SBC/STO functions

Wide range of connectivity options

CYGNUS LINE - FEATURES

External brake resistor interface for systems with high braking energy

An integrated thermal solution with optional fan enables reliable operation at high ambient temperatures

Integrated RS485 and CAN interfaces enable direct communication with external systems

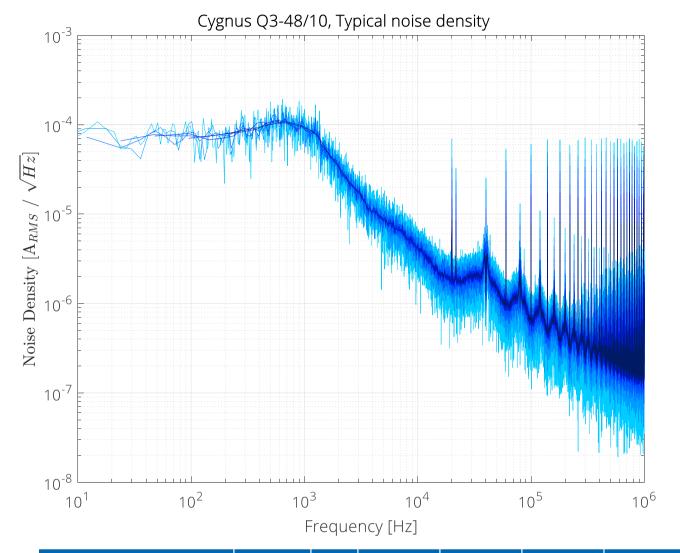
An embedded GbE diagnostic port allows real-time tracing of internal parameters and sensor values, even when connected to a 3rd-party EtherCAT master

Integrated Safe Torque Off (STO) and Safe Brake Control (SBC) functions reduce overall system complexity

Slew-rate limited outputs combined with internal filtering enables the use of unshielded connectors Single, dual and quad output versions cover a range from 500W up to 7kW_{PK} per axis

Cygnus S3-400/8

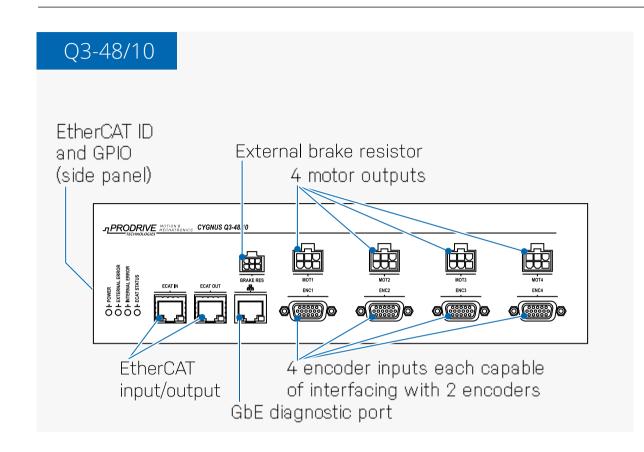
Cygnus D3-400/4

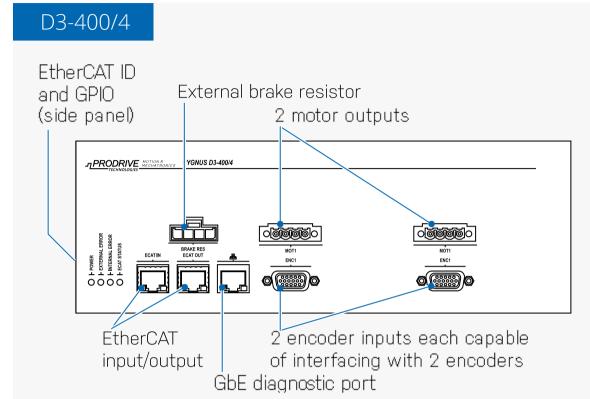

Cygnus 03-48/10

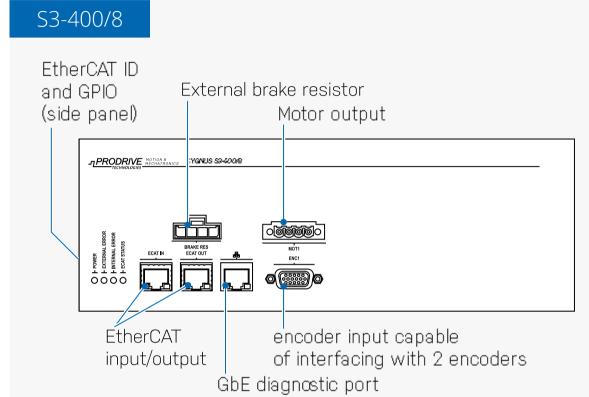
Cygnus Q3-48/10, overview

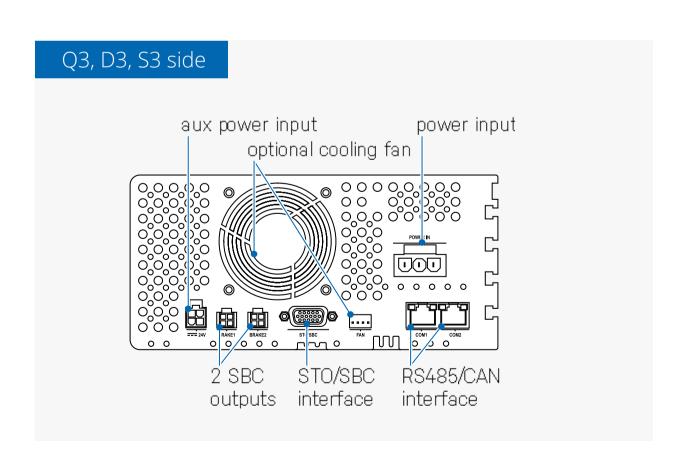
CYGNUS LINE - PERFORMANCE SPECIFICATIONS

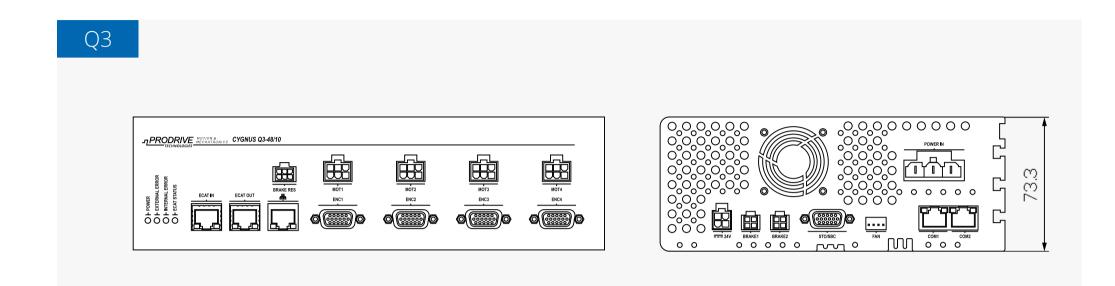
	Parameter	Symbol	Unit	S3-400/8	D3-400/4	Q3-48/10	Remark
	Supply input voltage	V _{SUPPLY}	V	390 - 410	390 - 410	17 - 54	
	Supply input voltage, abs. max	V _{SUPPLY_ABS_MAX}	V_{DC}	450	450	60	
Input	Peak input current	I _{SUPPLY_PEAK}	A _{PK}	max 20	max 20	max 50	
宣	Continous input current	I _{SUPPLY_CONT}	A_{RMS}	max 10	max 10	max 30	
	Auxiliary input voltage	V _{SUPPLY_AUX}	V		21 - 26		
	Auxiliary input current	I _{AUX_RMS}	A_{RMS}		max 3		
	Number of motor outputs	n _{MOT}	-	1	2	4	
	Supported motor types		-	PMSM / BI	_DC / Stepper /	/Induction	
	Peak phase current	I _{PH_PK}	A_{PK}	22,6	11,3	28,2	
	Continous phase current	I _{PH_CONT}	A_{RMS}	8,0	4,0	10,0	
	Peak phase-phase voltage range	\/	V_{PK}	0 - 355	0 - 355	0 - 43	Input voltage 400V _{DC} /48V _{DC}
Output		V _{PHPH_PEAK}	V_{RMS}	0 - 250	0 - 250	0 - 30	
ont	Current loop, small signal bandwidth	f _{-3dB}	kHz		1		-3dB, typical value
	Rated switching frequency	f _{PWM}	kHz	20			
	Output frequency	f _{MOT}	Hz		0 - 595		dual use limited, see note
	Electrical braking function		-		No		
	External brake resistor		-		No		
	Internal brake resistor		-		Yes		
	Offset	E _{MOT_OFFSET}	% of I _{PH_PK}		<1,0		
acy	Offset drift	E _{MOT_OFFSET_DRIFT}	% of I _{PH_PK}		<1,0		
Accuracy	Gain error	E _{MOT_GAIN}	% of I _{PH_PK}		<4,0		
Aco	Gain error drift	E _{MOT_GAIN_DRIFT}	ppm of I_{PK}		<8000		
	Non-linearity	E _{MOT_NONL}	ppm of I_{PK}		<5000		
به	Noise (spectral density @100Hz)	I _{NOISE_LF}	µA/√Hz	50	20	100	typical value at 0A setpoint
Noise	Noise (rms, 1Hz-10kHz)	I _{NOISE_100kHz}	μA_{RMS}		-		
2	Ripple	I _{MOT_RIPPLE}	μA_{RMS}		-		
	Interface type				GbE		
0			-		EtherCAT		
Control					RS485		50MBps max
S	Update rate	f _{ECAT}	-		100Hz - 20kHz	7	
	Diagnostic interface		-		GbE		

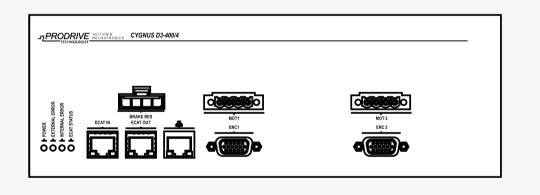

	Parameter	Symbol	Unit	S3-400/8 D3-400/4	Q3-48/10	Remark
	Applicable standard		-	IEC/UL61800-5-1		pending certification
	Pollution degree	PD	-	2		
₹	Overvoltage category	OVC	-	III		
Safety	IP-protection class /			IP20 / onen tvi	20	
Š	enclosure type		_	IP20 / open type		
	Max operating altitude	h _{OP_max}	m	2000		
	STO / SBC outputs		-	IEC61508, SIL	.3	pending certification
()	Applicable standard					
EMC	Input filtering			Cat C2, 2nd ei	٦V	use with listed supply
	Output filtering			Clamped LC filter (dV/	dt limiting)	

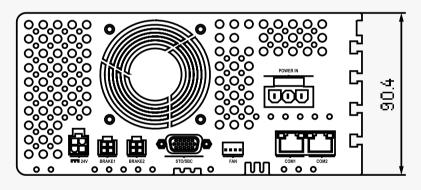

Notes:

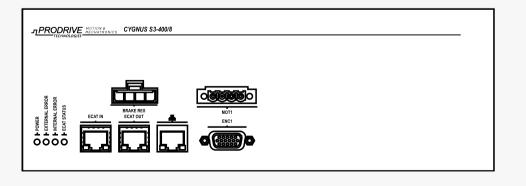

- All performance specifications are validated at an input voltage of 400VDC (Cygnus S3-400/8 & Cygnus D3-400/4) or 48VDC (Cygnus Q3-48/10)
 Dual use limited: output frequencies above 600Hz are subject to export control and require an export permit (EU 2021/821, 3A225)

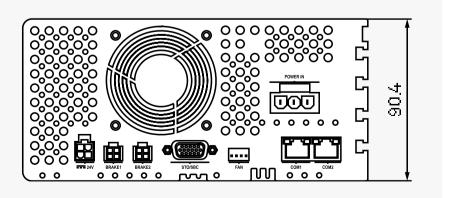

CYGNUS LINE - INTERFACES & MECHANICAL SPECIFICATIONS

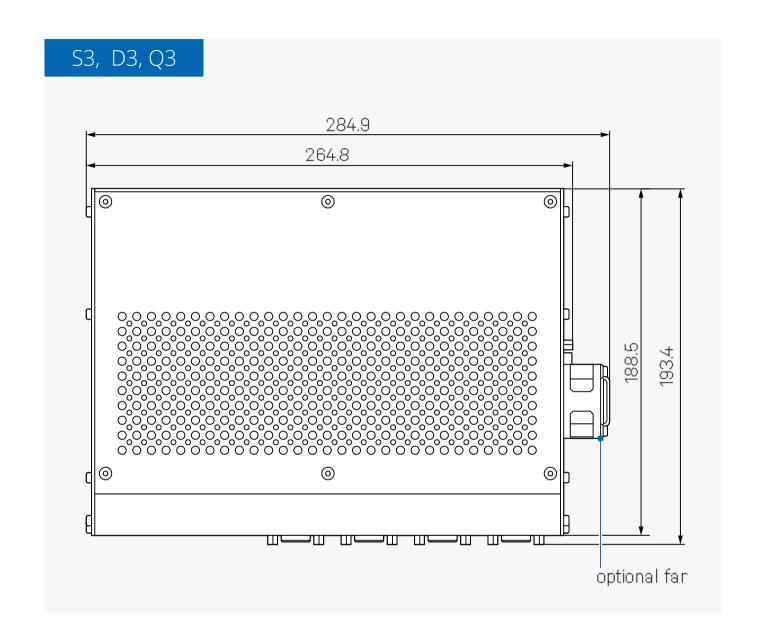



	abe diagnostic port	GDE diagnostic port					
	Parameter	Symbol	Unit	S3-400/8	D3-400/4	Q3-48/10	Remark
	Number of encoder inputs	n _{enc}	-	1	2	4	
der inputs	Supported types		-		Quadrature Analog Sin/Cos Digital hall Endat 2.1/2.2 erface DSL (2W/ SSI / BiSS C		
Encoder	Max signal frequency	f _{sincos_max}	-	1N	1Hz - 4M count	s/s	No missing pulses
	Maximum baudrate (digital encoders)	f _{rs422_max}	MHz		10		
	Encoder supply voltage	V _{ENCSUP}	V		5/10		software selectable
	Encoder supply current	I _{ENCSUP}	mA		max 250		
	Isolated digital inputs		-		4 x 24V input		(V _{IH} ≥11V, V _{IL} ≤5V, I _{IN} <15mA)
2_	Isolated digital outputs		-				
ose	Non-isolated digital inputs		-		3 x TTL		
purp	Non-isolated digital outputs		-		4x 24V -2A		
neral	Analog inputs			4 x ±10V (12-bit) + 1x 0-1	0V (10bit)	
Ge	Analog outpus		-		-		
	Brake outputs		-		2x 24V - 2A		

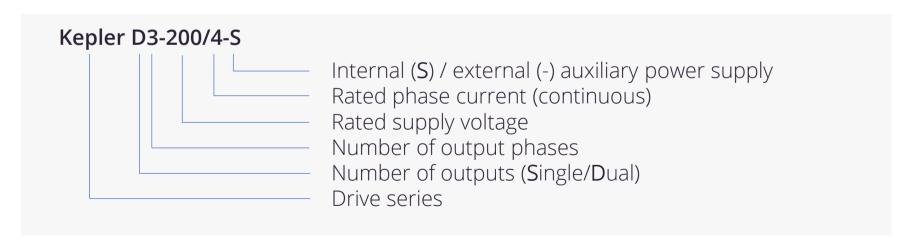

CYGNUS LINE - INTERFACES & MECHANICAL SPECIFICATIONS




D3



	Parameter	Symbol	Unit	S3-400/8	D3-400/4	Q3-48/10	Remark
	Width	d _W	mm	90	90	73	
	Depth	d_D	mm	195	195	195	
cal	Height	d _H	mm	265	265	265	
	Operating temperature range	T _{OP}	°C		5 - 45		
chani	Operating humidity range	h _{OP}	%		0 - 90		non-condensing
Me	Shock & Vibration		-	IEC	IEC60068-2-6 (Fc)		
2	Lifetime		-		>10 years		
	Mass	mass	kg	3,3	3,3	3,0	typical value

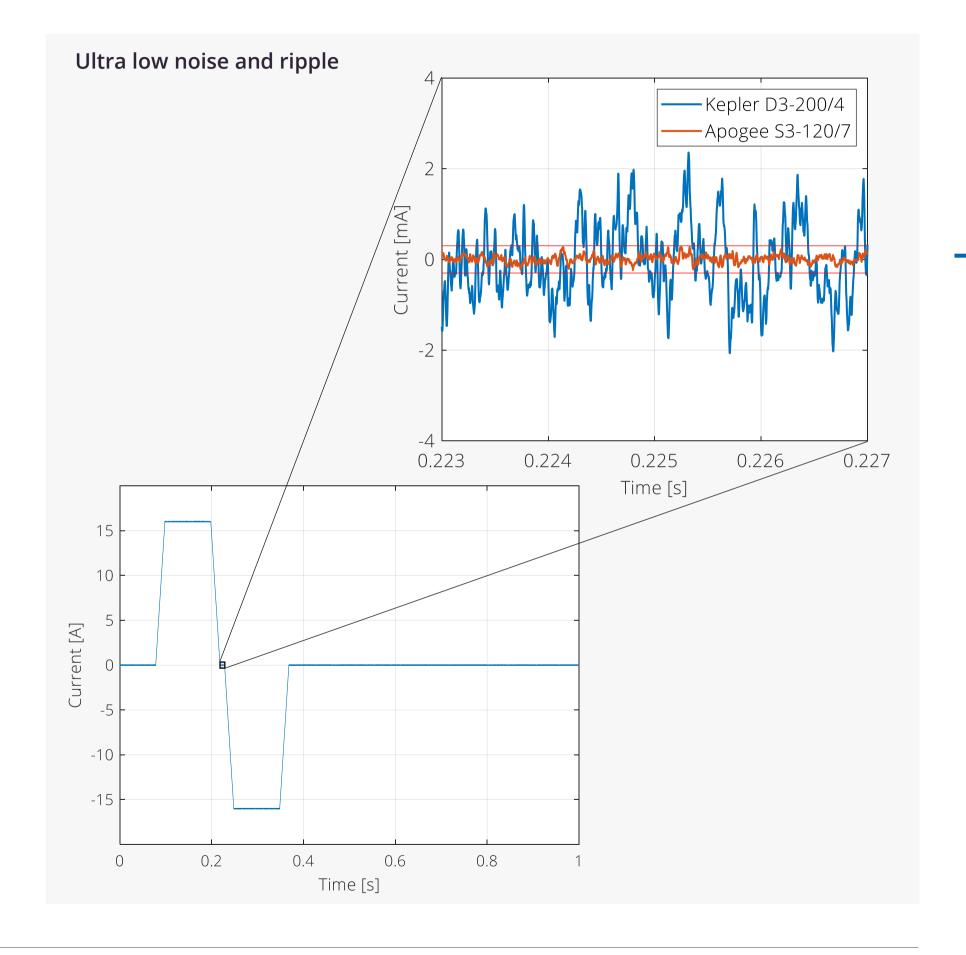

KEPLER LINE

The Kepler series is designed for demanding applications requiring high linearity and a very low output current ripple. This used to be the exclusive domain of linear amplifiers, but Prodrive Technologies uses its extensive experience in amplifier technology to introduce a PWM drive with negligible switching noise that matches linear drive performance. The Kepler motor drives offer world-class linearity and switching noise. Due to internal output filtering and EMI protections, the drive can operate with a minimal number of external components.

Kepler drives have an integrated Prodrive Motion Platform (PMP) motion controller. PMP is a highly flexible platform that is being used in many applications, ranging from personal transportation solutions to semiconductor industry. The PMP tooling ensures fast and effortless commissioning, while motion applications benefit from a powerful API and real-time control.

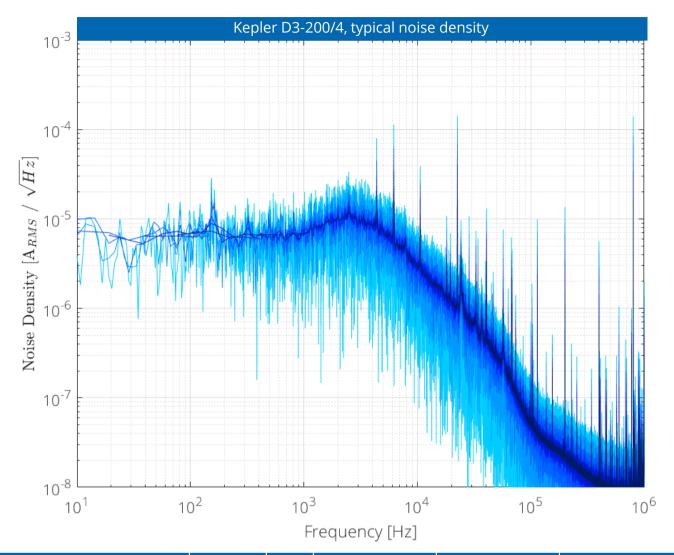
Integrated filtering

Programmable PMP motion controller via MATLAB Simulink integration


High precision Low Noise

Wide range of connectivity options

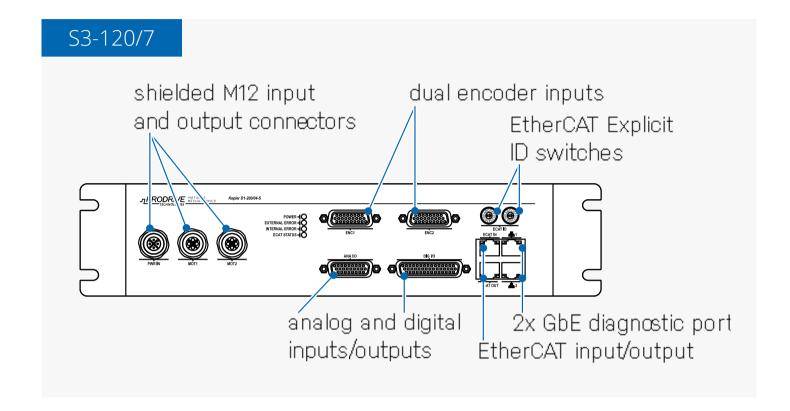
KEPLER LINE – FEATURES

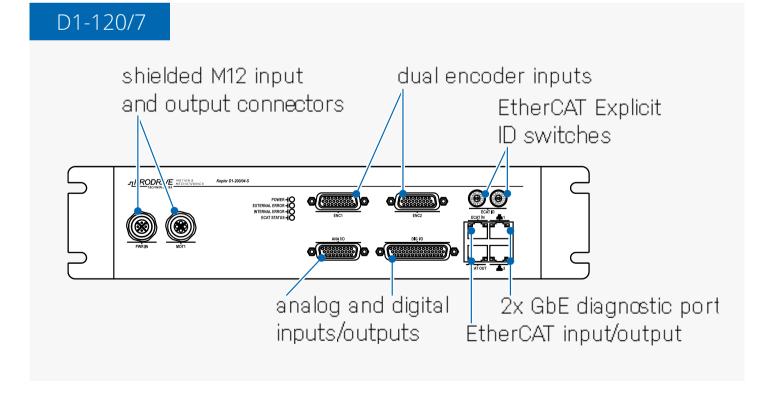

Dual, high-performance 200kHz power stages with Integrated thermal solution High resolution (18b), high bandwidth (800kHz) current measurement circuit Embedded motion controller with advanced diagnostic capabilities Actively damped low-pass filters almost completely eliminate any output ripple. Power of the control Dual encoder interfaces allow interfacing Kepler D3-200/4-S, with most common encoder types inside view

KEPLER LINE – PERFORMANCE SPECIFICATIONS

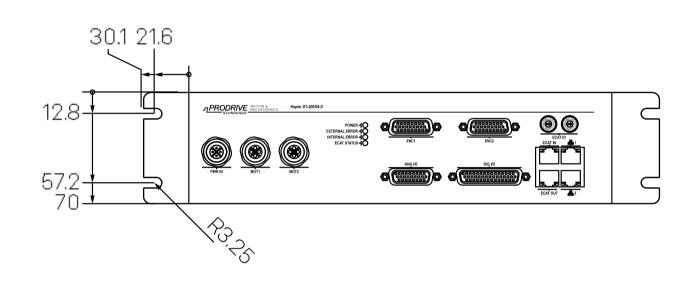
	Parameter	Symbol	Unit	D1-200/4	D3-200/4	Remark	
	Supply input voltage	V _{SUPPLY}	V	2x30 t	o 2x100	Balanced supply	
	Supply input voltage, abs. max	V _{SUPPLY_ABS_MAX}	V_{DC}	2x	110		
Input	Peak input current	I _{SUPPLY_PEAK}	A _{PK}	ma	x 21		
lnp	Continous input current	I _{SUPPLY_CONT}	A_{RMS}	ma	ax 9		
	Auxiliary input voltage	V _{SUPPLY_AUX}	V	22	- 26	for version without -S suffix	
	Auxiliary input current	I_{AUX_RMS}	A_{RMS}		2		
	Number of motor outputs	n _{MOT}	-	2	2		
	Supported motor types		-	voice coil	3-phase PMSM/BLDC		
	Peak phase current	I _{PH_PK}	A_{PK}		20		
	Continous phase current	I _{PH_CONT}	A_{RMS}	Δ	1,0		
	Peak phase-phase voltage range	\/	V_{PK}	0 -	180	- 2×60VDC	
put		V _{PHPH_PEAK}	V_{RMS}	0 -	120	V _{SUPPLY} = 2x60VDC	
Output	Current loop, small signal bandwidth	f _{-3dB}	kHz	2	- 4	-3dB, typical value	
	Rated switching frequency	f _{PWM}	kHz	200			
	Output frequency	f _{MOT}	Hz	0 -	595	dual use limited, see note	
	Electrical braking function		-	Υ	'es	shorts motor phases together	
	External brake resistor		-	1	No		
	Internal brake resistor		-	No	Yes		
	Offset	E _{MOT_OFFSET}	% of I _{PH_PK}	<(),25		
acy	Offset drift	E _{MOT_OFFSET_DRIFT}	% of I _{PH_PK}	<(),07		
Accuracy	Gain error	E _{MOT_GAIN}	% of I _{PH_PK}	<(),82		
Ac	Gain error drift	E _{MOT_GAIN_DRIFT}	ppm of I_{PK}	<1	500		
	Non-linearity	E _{MOT_NONL}	ppm of I_{PK}	<[550		
e)	Noise (spectral density @100Hz)	I _{NOISE_LF}	µA/√Hz	ma	x 20		
Noise	Noise (rms, 1Hz-10kHz)	I _{NOISE_100kHz}	μA_{RMS}	max	x 600		
Z	Ripple	I _{MOT_RIPPLE}	μA_{RMS}	3	50	2mH phase inductance, ±48V	
	Interface type			G	bE		
0.			-	Ethe	erCAT		
Control				RS	5422	50MBps max	
Ü	Update rate	f _{ECAT}	-	100Hz	- 20kHz		
	Diagnostic interface		-	G	bE		

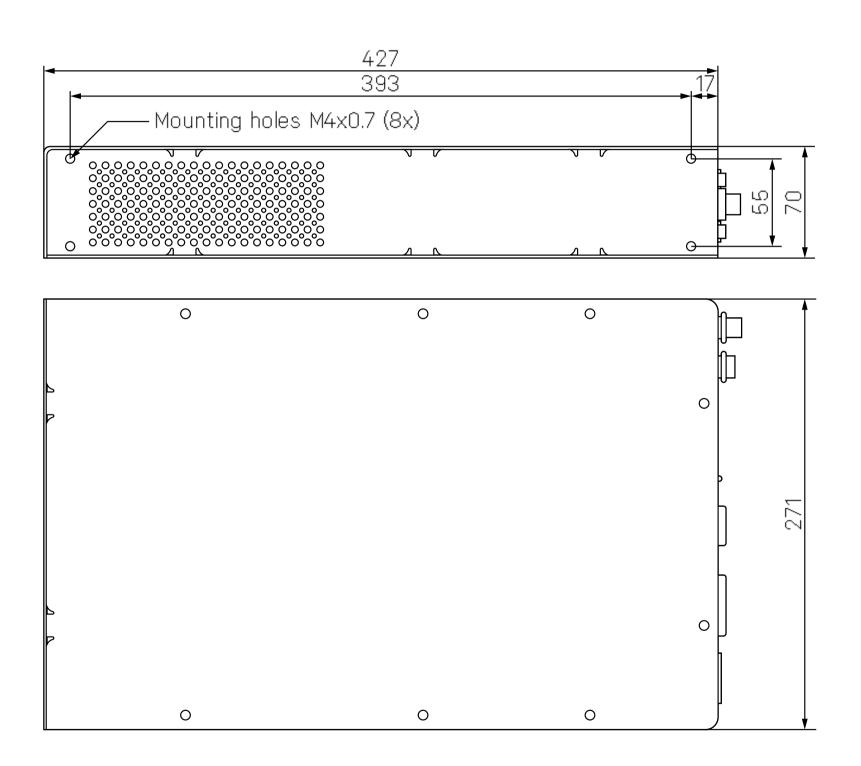
	Parameter	Symbol	Unit	D1-200/4	D3-200/4	Remark
	Applicable standard		-	IEC/UL6´	800-5-1	TüV certified
	Pollution degree	PD	-	2) -	
<u></u>	Overvoltage category	OVC	-			
Safety	IP-protection class /			IP20 / op	oen tyne	
Š	enclosure type		-	π 20 / Ομ	лептуре	
	Max operating altitude	h _{OP_max}	m	20	00	above mean sea level
	STO / SBC outputs		-	-		
()	Applicable standard			IEC61	800-3	
EMC	Input filtering			Cat C2, 2	2nd env	
	Output filtering			Actively da	amped LC	


Notes:


- All performance specifications are validated at an input voltage of 2 x 48V
- Dual use limited: output frequencies above 600Hz are subject to export control and require an export permit (EU 2021/821, 3A225)

KEPLER LINE – INTERFACES

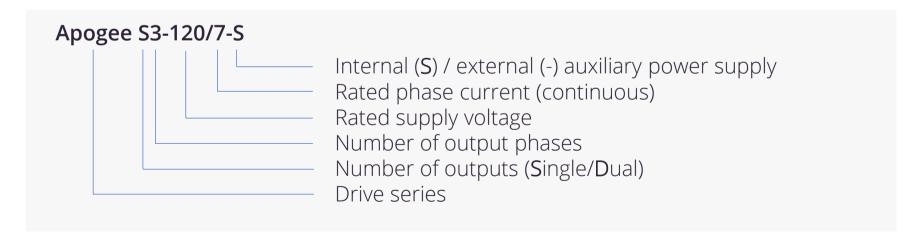

	Parameter	Symbol	Unit	D1-200/4	D3-200/4	Remark
	Number of encoder inputs	n _{ENC}	- 2			
Encoder inputs	Supported types		-	Quadra Analog Si Digital Endat 2. Hiperface DS SSI / Bis	n/Cos hall 1/2.2 L (2W/4W)	
Enc	Max signal frequency	f _{sincos_max}	MHz	1MHz - 4M	counts/s	No missing pulses
	Maximum baudrate (digital encoders)	f _{rs422_max}	MHz	32		
	Encoder supply voltage	V _{ENCSUP}	V	5/1	0	software selectable
	Encoder supply current	I _{ENCSUP}	mA	max 5	00	
	Isolated digital inputs		-	4 x 24	lV .	(V _{IH} ≥11V, V _{IL} ≤5V, I _{IN} <15mA)
9	Isolated digital outputs		-	4 x 30V / 5	500mA	
	Non-isolated digital inputs		-	4 x ⊤	ΓL	
ral purpose	Non-isolated digital outputs		-	2 x 24V - 1A - 2x 24V - 200mA 4x TTL output		
ener	Analog inputs		-	2 x ±10V diff		14bit resolution
Ge	Analog outpus		-	2 x ±10V diff		16bit resolution
	Brake outputs		-	-		



KEPLER LINE – MECHANICAL SPECIFICATIONS

	Parameter	Symbol	Unit	D1-200/4	D3-200/4	Remark
	Width	d _W	mm	27	1	
	Depth	d_D	mm	44	-2	including connectors
cal	Height	d _H	mm	70)	
Mechani	Operating temperature range	T _{OP}	°C	10 -	40	
ch	Operating humidity range	h _{OP}	%	20 -	80	non-condensing
×	Shock & Vibration		-	IEC60068	3-2-6 (Fc)	
	Lifetime		-	>10 y	ears ears	
	Mass	mass	kg	7,	0	typical value

APOGEE LINE


ultra-low output ripple and a highly linear response. This used to be the exclusive domain of linear amplifiers, but Prodrive Technologies uses its extensive experience in amplifier technology to introduce a PWM drive with negligible switching noise that matches linear drive performance.

Using proprietary end stage technology and a filtered output stage, the Apogee

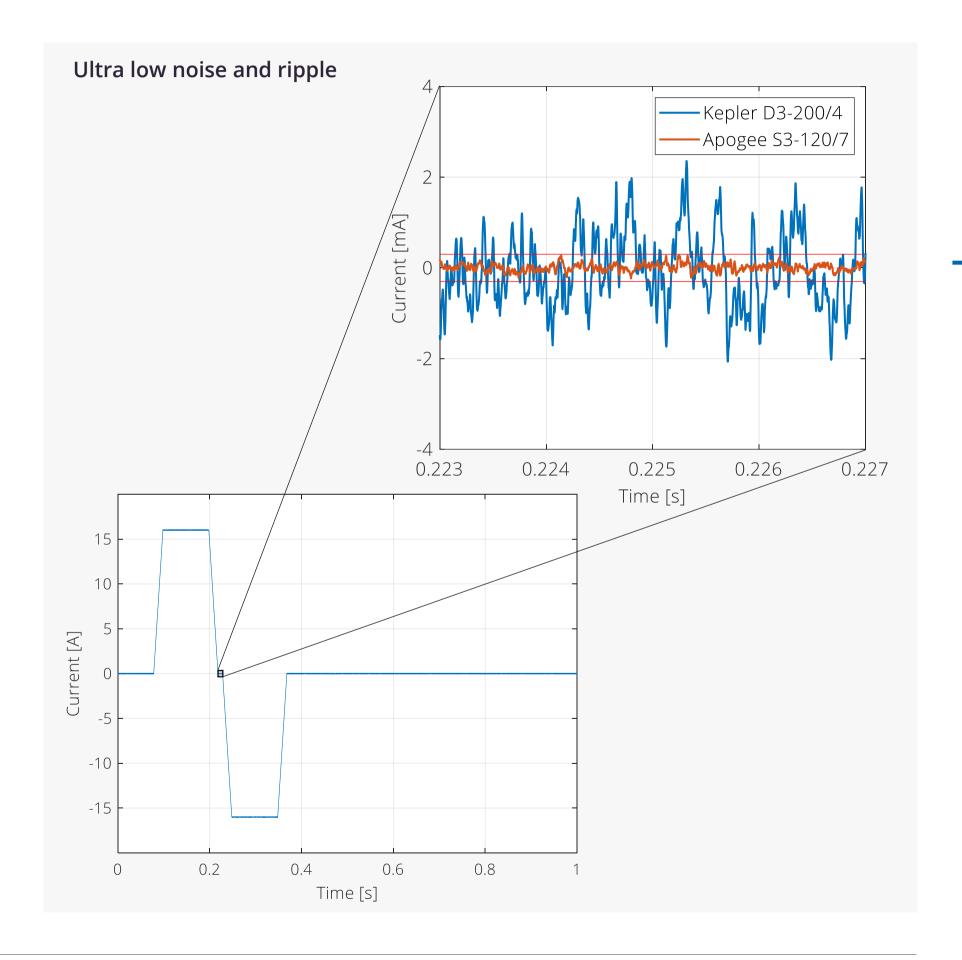
Apogee drives are especially designed for high-end applications that demand

Using proprietary end stage technology and a filtered output stage, the Apogee motor drives offer world-class linearity and switching noise. Due to internal output filtering and EMI protections, the drive can operate with a minimal number of external components.

Compared with traditional analog drives, the Apogee line offers an increased system efficiency, significantly reducing the thermal load on the system.

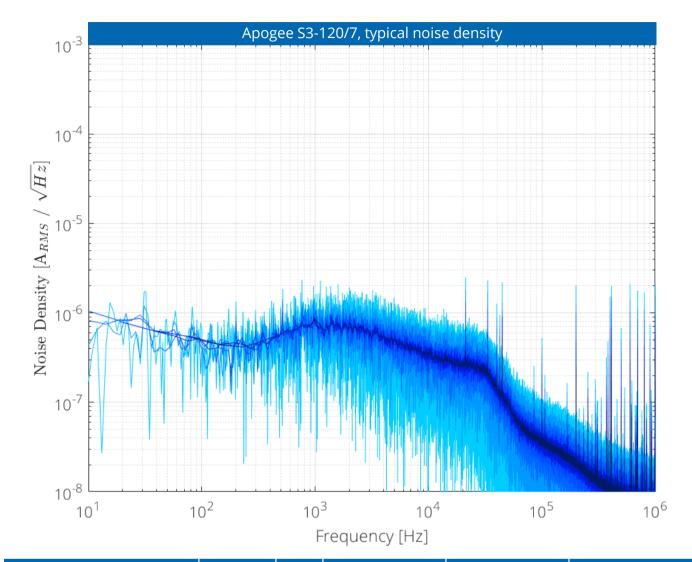
Integrated filtering

Programmable PMP motion controller via MATLAB Simulink integration


High precision Low Noise

Wide range of connectivity options

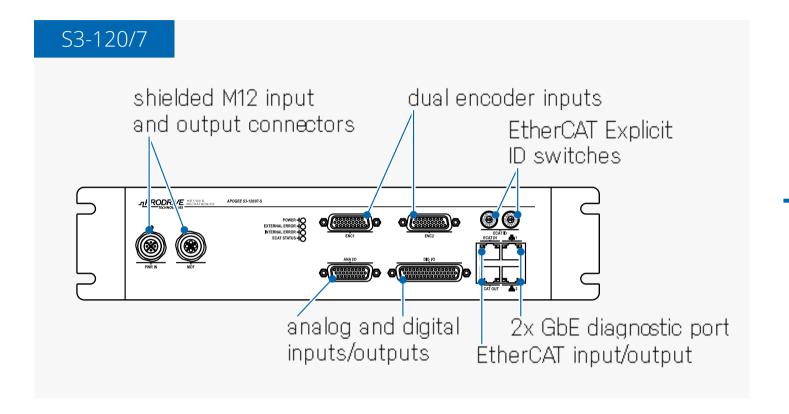
APOGEE LINE – FEATURES

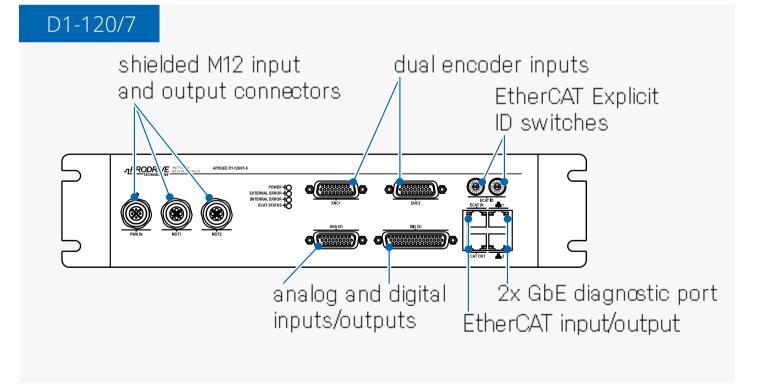

Internal low-pass filtering, combined with a multilevel output stage almost completely eliminates any output ripple. Embedded motion controller with advanced diagnostic capabilities The Apogee line uses high-stability metal foil resistors in combination with a temperature-controlled voltage reference to guarantee drift levels in the ppm range, significantly extending system level calibration intervals. A custom-developed fluxgate current sensor, together with a high-resolution feedback loop, ensures noise performances competing with the best linear amplifiers. Dual encoder interfaces allow interfacing Apogee S3-120/7-S, with most common encoder types inside view

APOGEE LINE – PERFORMANCE SPECIFICATIONS

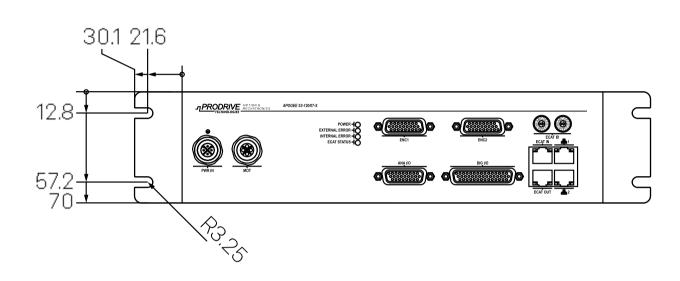
	Parameter	Symbol	Unit	S3-120/7	D1-120/7	Remark
	Supply input voltage	V_{SUPPLY}	V	2x30 to	2x60	Balanced supply
	Supply input voltage, abs. max	V _{SUPPLY_ABS_MAX}	V_{DC}	2x7	70	
Input	Peak input current	I _{SUPPLY_PEAK}	A _{PK}	max 12		
du	Continous input current	I _{SUPPLY_CONT}	A_{RMS}	ma>	< 7	
	Auxiliary input voltage	V _{SUPPLY_AUX}	V	22 -	26	for version without -S suffix
	Auxiliary input current	I _{AUX_RMS}	A_{RMS}	2		
	Number of motor outputs	n _{MOT}	-	1	2	
	Supported motor types		-	3-phase PMSM/BLDC	voice coil	
	Peak phase current	I _{PH_PK}	A _{PK}	16,	,5	
	Continous phase current	I _{PH_CONT}	A_{RMS}	6,5	5	
	Peak phase-phase voltage range	V	V_{PK}	0 - 1	00	V _{SUPPLY} = 2x60VDC
Output		V _{PHPH_PEAK}	V_{RMS}	0	70	VSUPPLY— ZXOOVDC
Out	Current loop, small signal bandwidth	f _{-3dB}	kHz	6 -	7	-3dB, typical value
	Rated switching frequency	f _{PWM}	kHz	200		
	Output frequency	f _{MOT}	Hz	0 - 595		dual use limited, see note
	Electrical braking function		-	Ye	S	shorts motor phases together
	External brake resistor		-	No	O	
	Internal brake resistor		-	Yes	No	
	Offset	E _{MOT_OFFSET}	% of I _{PH_PK}		,4	
Accuracy	Offset drift	E _{MOT_OFFSET_DRIFT}	% of I_{PH_PK}		,1	
cur	Gain error	E _{MOT_GAIN}	% of I _{PH_PK}	<0,	,7	
Ac	Gain error drift	E _{MOT_GAIN_DRIFT}	ppm of I_{PK}	<15	50	
	Non-linearity	E _{MOT_NONL}	ppm of I_{PK}	<5	0	
و	Noise (spectral density @100Hz)	I _{NOISE_LF}	µA/√Hz	ma>	< 1	
Noise	Noise (rms, 1Hz-10kHz)	I _{NOISE_10kHz}	μA _{RMS}	max	110	
	Ripple	I _{MOT_RIPPLE}	μA_{RMS}	10	0	2mH phase inductance, ±48V
	Interface type			Gb	E	
0			-	Ether	CAT	
Control				RS4	122	50MBps max
Ŭ	Update rate	f _{ECAT}	-	100Hz -	20kHz	
	Diagnostic interface		-	Gb	Ε	

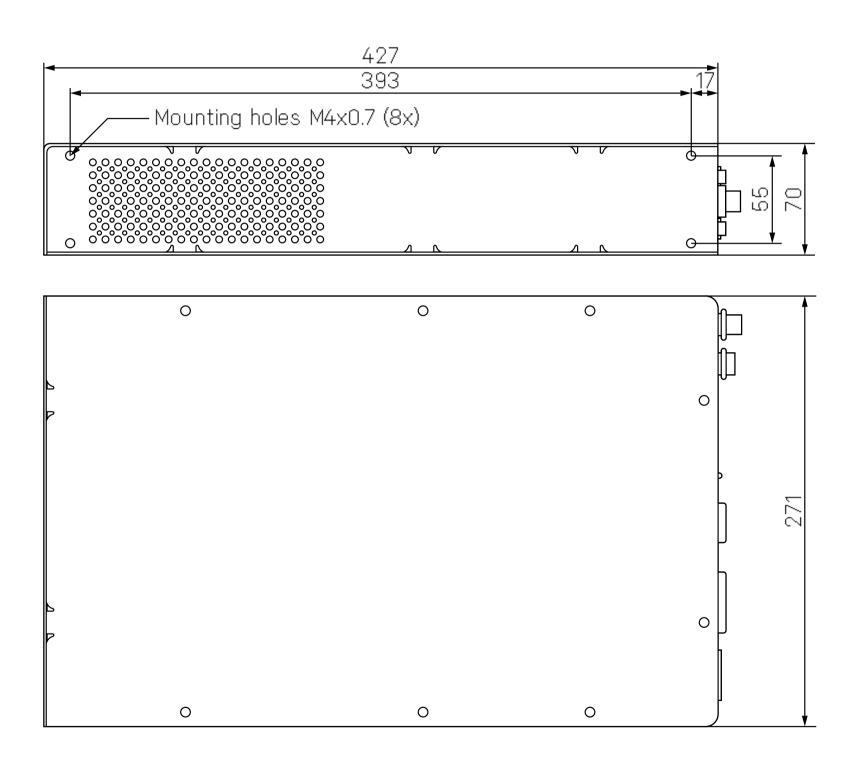
	Parameter	Symbol	Unit	S3-120/7	D1-120/7	Remark
	Applicable standard		-	IEC/UL6´	1800-5-1	TüV certified
	Pollution degree	PD	-	Ź) -	
₹	Overvoltage category	OVC	-			
Safety	IP-protection class /			IP20 / op	oen tyne	
Š	enclosure type		-	11 20 7 0	лептуре	
	Max operating altitude	h _{OP_max}	m	20	00	above mean sea level
	STO / SBC outputs		-	-	-	
()	Applicable standard			IEC61	800-3	
EMC	Input filtering			Cat C2, 2	2nd env	
	Output filtering			Actively da	amped LC	


Notes:

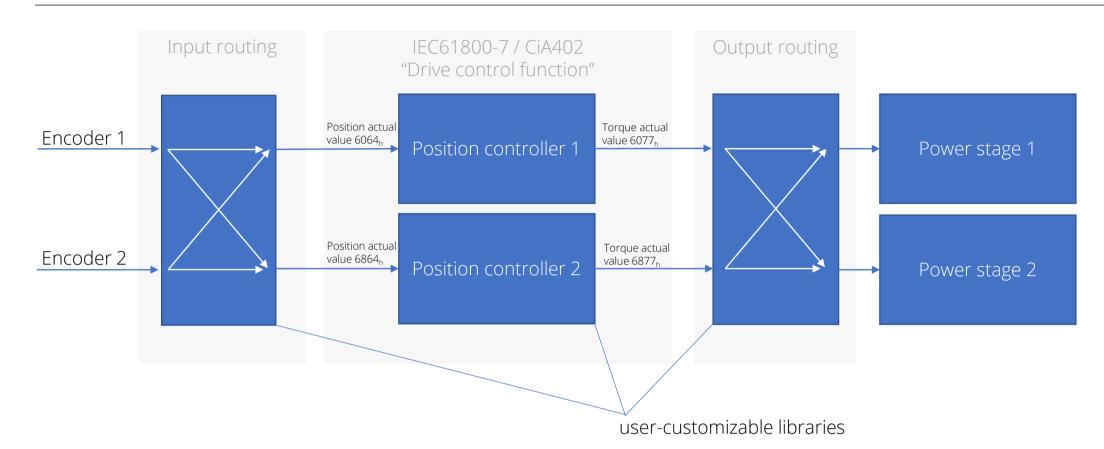

- All performance specifications are validated at an input voltage of 2 x 48V
- Dual use limited: output frequencies above 600Hz are subject to export control and require an export permit (EU 2021/821, 3A225)

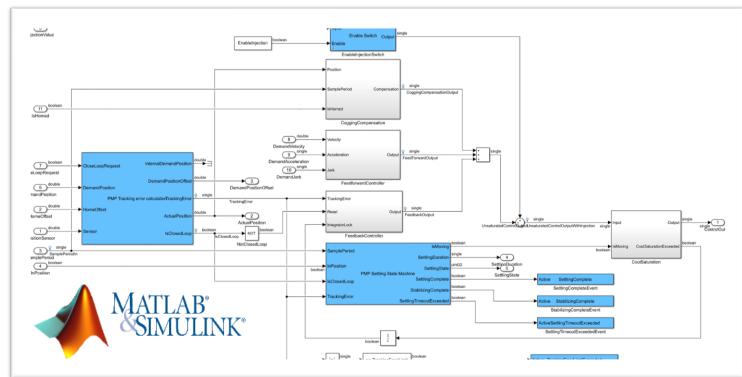
APOGEE LINE – INTERFACES


	Parameter	Symbol	Unit	S3-120/7	D1-120/7	Remark
	Number of encoder inputs	n _{ENC}	-	2		
Encoder inputs	Supported types		-	Quadrature Analog Sin/Cos Digital hall Endat 2.1/2.2 Hiperface DSL (2W/4W) SSI / BiSS C		
En	Max signal frequency	f _{sincos_max}	-	1MHz - 4N	/l counts/s	No missing pulses
Ī	Maximum baudrate (digital encoders)	f _{rs422_max}	MHz	3	2	
	Encoder supply voltage	V _{ENCSUP}	V	5/	10	software selectable
	Encoder supply current	I _{ENCSUP}	mA	max	500	
	Isolated digital inputs		-	4 x 2	24V	(V _{IH} ≥11V, V _{IL} ≤5V, I _{IN} <15mA)
9	Isolated digital outputs		-	4 x 30V / 500mA		
	Non-isolated digital inputs		-	4 x	TTL	
ral purpose	Non-isolated digital outputs		-	2 x 24 2x 24V - 4x TTL	200mA	
eneral	Analog inputs		-	2 x ±10	OV diff	14bit resolution
Ge	Analog outpus		-	2 x ±10V diff		16bit resolution
	Brake outputs		-	-		



APOGEE LINE -MECHANICAL SPECIFICATIONS




	Parameter	Symbol	Unit	S3-120/7	D1-120/7	Remark
	Width	d _W	mm	271		
	Depth	d _D	mm	442		including connectors
cal	Height	d _H	mm	70		
ani	Operating temperature range	T _{OP}	°C	10 - 40		
Mechani	Operating humidity range	h _{OP}	%	20 -	80	non-condensing
×	Shock & Vibration		-	IEC60068-2-6 (Fc)		
	Lifetime		-	>10 years		
	Mass	mass	kg	6,0		typical value

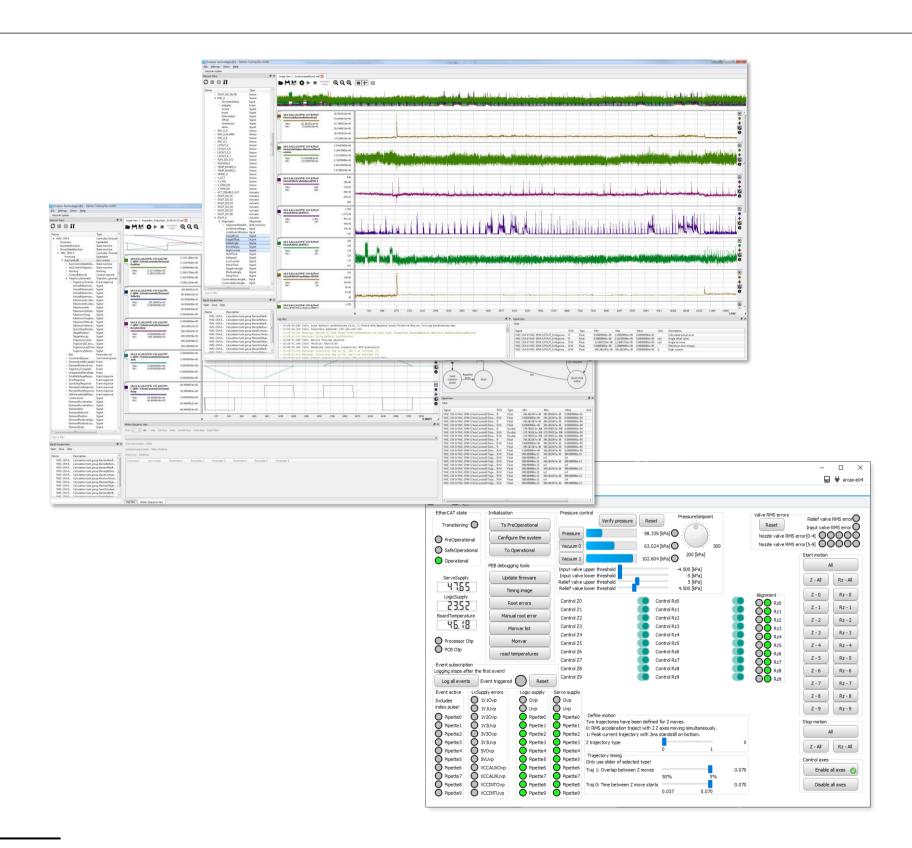
SERVO DRIVE FIRMWARE

Example for gantry control using a dual axis drive
Drive architecture (top), Position control library example (bottom)

Embedded motion controller

- ✓ Fast multi-core processing system
- ✓ Advanced trajectory generator
- ✓ Up to 20kHz position update rate
- ✓ Remotely updateable using EtherCAT or Ethernet

Flexible architecture using custom libraries


- ✓ Real-time execution of custom libraries.
 - ✓ Compiled from C/C++ or
 - ✓ generated by MATLAB/Simulink
 - ✓ Tracing/monitoring of execution time
- ✓ User-customizable input routing and output routing
 - ✓ Support for gantry systems
 - ✓ Decoupling of system dynamics in complex systems
 - ✓ Apply custom filtering
- ✓ User customizable drive control function
 - ✓ Supports multiple sensor inputs per control loop (dual loop feedback)
 - ✓ Provided with various examples

CiA402 compliant EtherCAT slave

- ✓ Remotely updateable using FoE
- ✓ Integrated alignment options for motor commutation (wake and shake, kick and swing, catch and move or fixed offset)
- ✓ Support all standard modes of operation (cst, cstca, csv, csp, pv, pp, homing)

SERVO DRIVE FIRMWARE

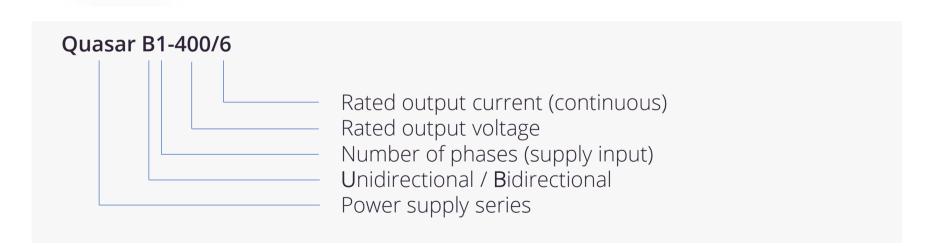
PMP motion tooling, showing the signal acquisition and HMI-views

Debug & integration tool suite

- ✓ Step-by-step configuration wizards
- ✓ Real-time tracing of measured values
- ✓ Remote firmware updating
- ✓ Triggered acquisition
- ✓ Queuing and executing movements
- ✓ User-configurable human machine interface view

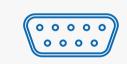
Service port

- ✓ Real-time tracing of measured values
- ✓ Triggered acquisition
- ✓ Remote diagnostics
- ✓ Independent/concurrent operation with EtherCAT


Prodrive motion API

- ✓ Directly interface with the drive using GbE
- ✓ Easy upgrading/downgrading between different drive series
- ✓ C++ and C# interfaces available
- ✓ MATLAB / python scripting
- ✓ Compatible with all Prodrive EtherCAT masters
- ✓ Long-term support

QUASAR LINE


With the Quasar B1-400/6, Prodrive Technologies offers a matching supply for the Cygnus D3-400/4 and S3-400/8 series of servo drives.

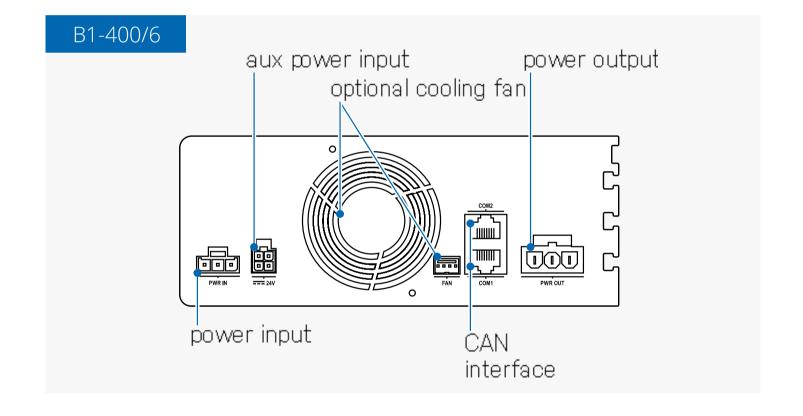
Quasar power supplies are available with single phase or three-phase power inputs and feature an integrated power factor correction circuit. The integrated power factor correction circuit precisely regulates the output voltage, therefore isolating the potentially unstable mains voltage from the drives and guarantying maximum performance. Unlike conventional rectifier-based drive systems, peak forces can still be delivered at high velocities, even with long cables or low mains voltages.

In addition to its integrated power factor correction circuit, select models in the Quasar series are capable of bidirectional power flow, increasing overall efficiency and saving cost on external brake resistors.

All Quasar power supplies are equipped with a CAN-interface which directly interfaces with our intelligent drives or motion controllers. Using this interface, critical parameters such is input/output voltages and currents can be monitored and alarms can be set to perform specific actions when the mains voltage reaches a predefined level.

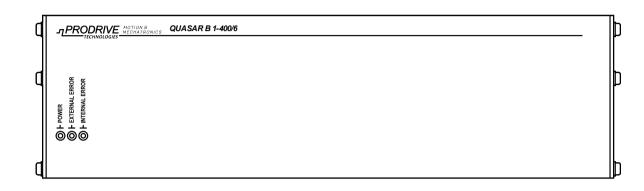
High peak power

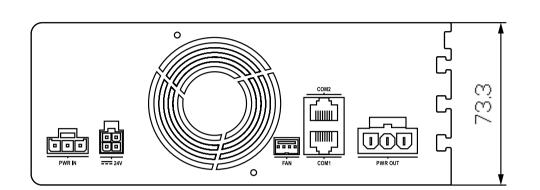
CAN interface for remote diagnostics

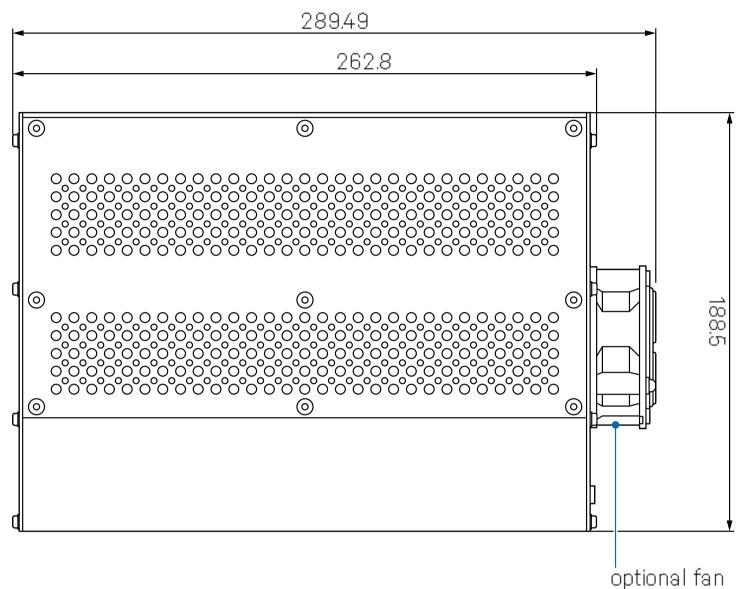

High efficiency & Bidirectional

Universal input voltage range

QUASAR LINE - INTERFACES & MECHANICAL SPECIFICATIONS




	Parameter	Symbol	Unit	B1-400/6	Remark
ut	Supply input voltage	V _{SUPPLY}	V	85 - 265	
	Supply input voltage, abs. max	V _{SUPPLY_ABS_MAX}	V_{AC}	280	
	Peak input current	I _{SUPPLY_PEAK}	A _{PK}	52	
	Continous input current	I _{SUPPLY_CONT}	A_{RMS}	15	
Input	Mains frequency	f _{MAINS}	Hz	50 / 60	
	Power factor	PF	Hz	min 0.9	P _{OUT} >10% of P _{OUT,MAX,CONT}
	Auxiliary input voltage	V _{SUPPLY_AUX}	V_{DC}	21-26	
	Auxiliary input current	I _{AUX_RMS}	A _{RMS}	max 3	
	Number of outputs	n _{out}	-	1	
	Average output voltage	V _{OUT}	V_{DC}	390 - 410	
	Ripple & Noise	V _{RIPPLE}	V _{PKPK}	max 20	@P _{OUT} =2.4kW
pri				max 60	@P _{OUT} =7.2kW
Output	Output current	I _{OUT}	А	6	
	Output current, peak	I _{OUT_PK}	A _{PK}	18	
	Load regulation	V _{OUT_REG}	-	max ±10%	max 50W/ms
	Efficiency	η _{MAX}	-	>90%	at maximum load
S	Interface	-	-	CAN V2.0A	
gnostics	Applicable standard	-	-		
agn	Device profile	-	-	CiA 453	
Dia	Bit rate	-	MBps	up to 1	



QUASAR LINE - INTERFACES & MECHANICAL SPECIFICATIONS

	Parameter	Symbol	Unit	B1-400/6	Remark
	Applicable standard		-	IEC61800-5-1	
ty	Pollution degree	PD	-	2	
Safety	Overvoltage category	OVC	-	III	
S	IP-protection class / encl	osure type	-	20 / open type	
	Max operating altitude	h _{OP_max}	m	2000	above mean sea level
10	Applicable standard			IEC61800-3	
EMC	Classification		-	Cat C2, 2nd env	

	Parameter	Symbol	Unit	B1-400/6	Remark
	Width	d _W	mm	73	
	Depth	d_D	mm	195	
<u>_</u>	Height	d _H	mm	265	
hanical	Operating temperature range	T _{OP}	°C	5-45	
hal	Storage temperature range	T _{STOR}	°C	-20-70	
Mec	Operating humidity range	h _{OP}	%	0-95%	non-condensing
2	Shock & Vibration		-	IEC60068-2-6	
	Lifetime	-	year	>10	
	Mass	mass	kg	3.6	typical value

(

6

THE RESERVE OF

1

CONTACT

Phone: +31 (0)40 2676200

E-mail: contact@prodrive-technologies.com

Web: www.prodrive-technologies.com